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1. Introduction 

Observations are often used to enhance the initial conditions in a mesoscale model to improve 
the subsequent model forecast. However, in order to utilize observations made at discrete points 
to improve a three-dimensional model, one must make certain assumptions. We illustrate how 
the introduction of observations into the initial conditions can cause the initial conditions to be 
excessively dry, and demonstrate solutions to the overdrying.   

Instead of directly using output from a coarser-grid model as initial conditions for a mesoscale 
model integration, incorporating observations into the initial conditions can allow the initial 
conditions to more closely match observed conditions. Various techniques are available to utilize 
observations in the initial conditions including those that introduce changes at discrete times 
(intermittent) and those that gradually adjust the model solution over many time steps 
(continuous). Examples of intermittent techniques include three-dimensional variational 
assimilation (3DVAR) and Ensemble Kalman filter, while examples of continuous techniques 
include four-dimensional variational assimilation (4DVAR) and Newtonian relaxation (nudging).  
Here we gradually nudge the model towards observations (observation nudging) during a 
preforecast in order to improve the conditions used to start the free forecast. This technique is 
conceptually simple, relatively inexpensive computationally, and allows the dynamic balance 
and intervariable consistency of the model to be maintained (Ardao-Berdejo and Stauffer, 1996; 
Seaman, 2000). Observation nudging has been used successfully in many past studies (e.g., 
Stauffer and Seaman, 1994; Schroeder et al., 2006; Otte, 2008a, b). We also use a flow-
dependent multiscan Cressman analysis method to incorporate observations into the model 
conditions at the beginning of the preforecast. 

Assimilation of moisture information can pose difficulties due to the high spatial variability of 
mixing ratio (and specific humidity) relative to the absolute value of mixing ratio (and specific 
humidity) (e.g., Dee and da Silva, 2003). This spatial variability may make it more difficult to 
determine the correlation length scales to assume when assimilating moisture. It may also mean 
that a rather modest error in mixing ratio at the observation location (as a percentage of the 
model mixing ratio) will be translated by the data assimilation methodology into a very large 
change in modeled mixing ratio (relative to the precorrected mixing ratio) at a nearby location. 

We describe overdrying introduced into the model solution via incorporation of observations into 
the model initial conditions, and describe solutions to this issue. In section 2 we describe the 
model we used to investigate this problem and its configuration and in section 3 we describe the 
cases studied. The methodology used to incorporate observations is discussed in section 4, while 
the experimental design is included in section 5. Sections 6 and 7 describe the results and the 
summary and conclusions, respectively. 
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2. Model Description and Configuration 

The Advanced Research version of the Weather Research and Forecasting model (WRF-ARW) 
v3.4.1 (Skamarock et al., 2008) was configured with 9-km horizontal resolution centered over 
southern California and 56 vertical layers. The model was integrated from 12 Coordinated 
Universal Time (UTC) to 12 UTC for the five case days described in section 3.    

Global Forecast System (GFS) 0.5-degree horizontal resolution output is used to create initial 
conditions and boundary conditions. A higher-resolution product from the National Centers for 
Environmental Prediction, Marine Modeling and Analysis Branch, called the Real Time Global 
Sea Surface Temperature (Gemmill et al., 2007) has one-twelfth degree horizontal grid spacing 
and was used to specify sea surface temperatures. Where available, GFS snow fields were 
replaced with 1-km snow fields from the National Weather Service’s National Operational 
Hydrologic Remote Sensing Center (NOHRSC) Snow Data Assimilation System (SNODAS) 
(National Operational Hydrologic Remote Sensing Center, 2004).   

Obsgrid is part of the WRF software suite and can be used to create objective analyses and 
complete quality control on observations. Initial conditions for some experiments in this study 
are enhanced with observations using Obsgrid. Modifications to the methodology used to create 
these objective analyses are investigated in this study and described in section 4.4. We also use 
Obsgrid to perform quality control of the observations used for inclusion in the initial conditions 
and for data assimilation. The quality control component of Obsgrid includes checking 
observations for gross errors, comparing observations to nearby observations (buddy check), and 
comparing observations to a background field (here GFS). For moisture observations, in addition 
to checking relative humidity, buddy checks and checks against the background field were added 
for dewpoint to allow overly dry observations to be removed more efficiently.   

The Mellor-Yamada-Janjić (MYJ) scheme (Janjić, 2002) is used to parameterize the atmospheric 
boundary layer. This parameterization predicts turbulent kinetic energy (TKE) and is a Mellor-
Yamada Level 2.5 turbulence closure model. As in Lee et al. (2012) and Reen et al. (2013), the 
background TKE is decreased to better simulate conditions with low-TKE and the atmospheric 
boundary layer (ABL) depth diagnosis is altered. In preliminary experiments for this study, the 
standard MYJ scheme resulted in noisy TKE fields and thus noisy ABL depth fields over the 
water. These were resolved using the altered version of MYJ. 

The WRF single-moment five-class microphysics parameterization (Hong et al., 2004; Hong and 
Lim, 2006) is utilized and the Kain-Fritsch cumulus parameterization (Kain, 2004) is utilized on 
the 9-km horizontal grid spacing domain only. For radiation, the Rapid Radiative Transfer Model 
(RRTM) (Mlawer et al., 1997) is used for longwave and the Dudhia scheme (Dudhia, 1989) for 
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shortwave. The Noah land surface model (Chen and Dudhia, 2001) is used to represent land 
surface processes. 

The observation nudging capability of WRF (Deng et al., 2009) is used to incorporate 
observations into the model via a 6-hour (h) preforecast (12–18 UTC). During this preforecast, 
the model is gradually nudged towards observations of temperature, moisture, and wind. The 
standard WRFV3.4.1 observation nudging technique is described in more detail in section 4.3, as 
are modifications to this technique investigated here.    

3. Case Description 

Five 24-h periods from early 2012 over the southwestern United States were examined, which 
started at 12 UTC on 7 February, 9 February, 16 February, 1 March, and 5 March, 2013. The 
case days were chosen to include days with active weather and more benign weather. On 7 
February a trough moved onshore and led to widespread precipitation in the region. More 
quiescent weather was in place for the 9 February case with a 500-hPa-ridge centered over 
central California at 12 UTC. On 16 February an upper-level low is near the California/Arizona 
border with Mexico at 12 UTC, bringing precipitation to that portion of the domain. The area of 
low pressure and the associated precipitation move off to the south and then east as the case day 
progresses. For  
1 March, a weak shortwave trough results in precipitation in northern California at the beginning 
of the period that spreads to Nevada and then moves southward and decreases in coverage. There 
is widespread high-level cloudiness for the 5 March case due to weak upper-level low pressure, 
but very limited precipitation.   

4. Methodology 

4.1 Dewpoint Climatology 

In order to provide an objective measure of whether the model is producing moisture fields that 
are unusually dry, and thus potentially suspect, a dewpoint climatology was constructed using 
rawinsonde data. All rawinsonde data for January, February, and March from 1990–2012 at four 
locations within the model domain are included. The four locations are Oakland, CA; San Diego, 
CA; Tucson, AZ; and Desert Rock, NV. Desert Rock did not take upper-air observations in 2011 
or 2012. At each of the locations, the dewpoint representing the 0.1 percentile value was 
calculated for 50-hPa bins for the period described. For each 50-hPa bin, the lowest value for this 
0.1 percentile value among the four locations was chosen to create a vertical profile of 
dewpoints. This vertical profile is used to evaluate whether the model is unrealistically dry. The 
0.0 percentile value (the absolute minimum) was not used because that value would be more 
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sensitive to any erroneous values of dewpoint included in the observation dataset. For this 
comparison, dewpoint was calculated using Bolton (1980) for both the model and the 
observations. For the rawinsondes, dewpoint was first converted to water vapor mixing ratio 
using Hyland and Wexler (1983) to allow the use of Bolton (1980). The 0.1 percentile values are 
shown in figure 1. 

 

 

Figure 1.  Vertical profile of the minimum of the 0.1 percentile dewpoint for Oakland, CA; San Diego, CA; Tucson, 
AZ; and Desert Rock, NV; for January–March, 1990–2012.   

4.2 Observation Data Sources 

Observations from the Meteorological Assimilation Data Ingest System (MADIS) 
(madis.noaa.gov) database as well as Tropospheric Aircraft Meteorological Data Reports 
(TAMDAR) (e.g., Gao et al., 2012) observations were used for data assimilation. The MADIS 
data included standard surface observations, as well as mesonet data, profiler data, aircraft data, 
and rawinsondes. In addition to the Obsgrid quality control procedures described in section 2, 
use/reject lists from a test version of the Real Time Mesoscale Analysis (RTMA) (De Pondeca et 
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al., 2011) were used to filter the mesonet data. The construction of these use/reject lists includes 
calculating the long-term differences between a given location’s observations and a background 
field, and then comparing these differences to those found by comparing Aviation Routine 
Weather Report (METAR) observations (i.e., nonmesonet observations that should be well sited) 
to the background field. The goal of this process is to find stations whose observation differences 
from the background field are sufficiently larger than those of METAR observations that the 
mesonet observations are considered to not be trustworthy. Universal reject lists as well as 
separate day/night reject lists are used for temperature and moisture. For wind, mesonet 
observations are rejected unless they are on the universal accept list or the observed wind 
direction is within a wind direction bin that is listed as acceptable for that station. The wind 
direction bins allow wind observations to be included from a site where nearby obstructions only 
affect the wind observations when the wind is coming from certain directions. The use of these 
use/reject lists is designed to maximize the positive impact of mesonet observations while 
minimizing the potential negative impact of mesonet observations that may arise due to issues 
such as siting (e.g., wind observations at heights other than 10-m above ground level (AGL), 
obstructions near the observation location). The TAMDAR dataset consists of aircraft-based 
observations of temperature, moisture, and winds. TAMDAR is not included in MADIS during 
the study period, and is potentially more valuable than some other aircraft-based measurements 
due to its inclusion of moisture and its use of Global Positioning System (GPS)-based height 
rather than pressure altitude. 

4.3 Nudging Technique 

Observation nudging adds a nonphysical term to the tendency equations, and is implemented in 
WRF as 
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where q is the quantity being nudged (e.g., water vapor mixing ratio), µ is the dry hydrostatic 
pressure, Fq represents the physical tendency terms of q, Gq is the nudging strength for q, N is the 
total number of observations, i is the index to the current observation, Wq is the spatiotemporal 
weighting function, qo is the observed value of q, and qm(xi,yi,zi,t) is the model value of q 
interpolated to the observation location. The quantity qo-qm is the innovation. In WRF 
observation nudging, the innovations from surface observations are spread along the model 
surface, whereas innovations from above-surface observations are spread based on pressure.  
Note that unlike the standard WRF observation nudging code, surface observations reported as 
part of a sounding are treated as surface observations by the observation nudging rather than as 
part of the sounding; this allows them to be spread horizontally as surface observations. 



 

 6

We test placing a limit on the magnitude of negative water vapor mixing ratio innovations in 
certain conditions. Given an observation at a location A, an innovation will be calculated that is 
valid at location A in the model. The limit on the magnitude of negative water vapor mixing ratio 
innovations applies when the innovation from location A is applied to a location B and the model 
is drier at location B than at location A. In this case, the magnitude of the negative moisture 
innovation applied to location B is limited to be no more than the model water vapor mixing 
ratio at the location B. Consider the case where one is applying an observation q0(i) to qm(x,y,z,t). 

If 

           tzyxqtzyxqtzyxqiq iiimmiiimo ,,,,,, and 0,,,   (2) 

then the nudging equation becomes, 
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4.4 Initial Condition Enhancement 

For some experiments we use initial conditions generated by incorporating observations onto the 
GFS fields through a modified Cressman analysis with Obsgrid. The Cressman analysis is 
applied through a series of four scans with successively smaller radii of influence. The area a 
given wind or moisture observation influences is a “banana” shape following the wind flow (this 
reduces to an ellipse in noncurved flow and a circle in weak-wind conditions).  

We investigate modifying the Cressman analysis in Obsgrid for relative humidity to limit its 
introduction of very dry conditions. The modification is applied in the following situation: when 
an observation at point A (RHob,A) indicates that the current first guess field (RHfg,A) is too moist 
(i.e., RHfg,A > RHob,A) and one is applying this correction (i.e., RHob,A - RHfg,A) to a point B where 
the first guess field (RHfg,B) is drier than at point A (i.e., RHfg,B < RHfg,A). In this situation, the 
adjustment made to the first-guess field at point B to find the analysis value (RHan,B) is scaled by 
the relationship between first-guess relative humidity at point B as compared to first-guess 
relative humidity at point A. In other words, for a case with a single observation at point A, when 
applying this to the analysis at point B, if 

       AfgBfgAobAfg RHRHRHRH ,,,, 

																																																				 , , ∧ , ,           (4) 

then, 
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Else, 

  AfgAobBfgBan RHRHFRHRH ,,,,  , , ∗ , ,  (6) 

 
where F is the distance weighting. For the first scan (largest radius of influence), the first-guess 
field is GFS, but for subsequent scans the first-guess field is the end result of the previous scan. 

5. Experimental Design 

A set of experiments that varies the initial conditions and the data-assimilation configuration are 
compared to a control experiment using GFS data as initial conditions and no data assimilation 
(Exp. Control). These experiments were completed on all five case days and are listed in table 1. 

Table 1.  Experimental design.  
The table indicates whether the source of initial conditions is GFS 
and whether observations are incorporated via objective analysis and whether 
modifications are made to the Cressman method for moisture. The table also 
indicates whether nudging is applied, whether the nudging method was modified 
for moisture, and the nudging weight. 

Experiment Name 
Initial Conditions Nudging 

GFS Obs 
Cressman
Modified 

Applied Modified Weight (G) 

Control X      
ObIC X X     

ObIC+ X X X    
ObIC+Nud4 X X X X  4 ×10-4 s-1 

ObIC+Nud4+ X X X X X 4 ×10-4 s-1 
ObIC+Nud8 X X X X  8 ×10-4 s-1 

ObIC+Nud8+ X X X X X 8 ×10-4 s-1 

 

The initial conditions were created using three options. Exp. Control used the GFS fields for the 
initial conditions. The standard Cressman analysis scheme in Obsgrid was used to create the 
initial conditions for Exp. ObIC. Exp. ObIC+ also included observations in the initial conditions, 
but did so using the modification to the Cressman scheme for moisture described in section 4.4. 
All experiments not described in this paragraph also used this modification. 

Data assimilation was applied via observation nudging for some experiments, but with two 
variations among these experiments. The standard technique was used for Exp. ObIC+Nud4 and 
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ObIC+Nud8, while the modification to water vapor mixing ratio assimilation described in 
section 4.3 was used for Exp. ObIC+Nud4+ and ObIC+Nud8+. The nudging weight (G), was set 
to 4 × 10–4 s–1 for Exp. ObIC+Nud4 and ObIC+Nud4+, but to 8 × 10–4 s–1 for Exp. ObIC+Nud8 
and ObIC+Nud8+.   

6. Results  

6.1 Initial Conditions 

Unusually dry conditions can be introduced into WRF through the initial conditions. For 
example, figure 3a shows the dewpoint at model level 15 at the initial time (12 UTC) for Exp. 
Control on 16 February 2012. Using the GFS data alone for initial conditions yields one area 
with very dry conditions over the Pacific Ocean (at approximately 29 °N, 122 °W); the minimum 
dewpoint in this area is approximately –78 °C. This is well below the climatological 0.1 
percentile value of –47 °C for this level (approximately 850 hPa; figure 1) derived as described 
in section 4.1. 

The inclusion of observations in the initial condition analysis via Obsgrid (Exp. ObIC) results in 
more extensive dry regions (figure 3b). A much larger area of relatively low dewpoints are now 
found along the western edge of the domain. Also, now there are two additional areas with low 
dewpoints: (1) over the Pacific Ocean at about 33 °N, 122 °W where the minimum dewpoint is 
approximately –78 °C at approximately 850 hPa; (2) along the Arizona-Mexico border around 
111 °W where the minimum dewpoint is approximately –80 °C at approximately 700 hPa. For 
this model level at this time the percentage of grid cells whose dewpoint falls below the 
climatological 0.l percentile value increases with the inclusion of observations in the initial 
conditions (i.e., Exp. Control to Exp. ObIC) from 1.13% to 8.50%. 

The overall scope of the problem can be examined by looking at the percent of model grid points 
below 350 hPa that have a dewpoint less than the 0.1 percentile value (figure 4). Model grid 
points above 350 hPa are excluded due to the very dry conditions at these levels (the 
climatological 0.1 percentile value falls below –80 °C, just above 350 hPa). For Exp. Control 
(figure 4a), the time series of this quantity indicates that most of the experiments stay below 
0.2%, but that 16 February starts out around 0.5% and then falls. This means that some points are 
initialized with very dry dewpoints when using GFS, but the prevalence of these dry locations is 
higher for the 16 February case. Incorporating observations into the initial conditions via Obsgrid 
(figure 4b) notably increases the percentage of very dry model grid points; all experiments start 
out at or above about 0.5%, but 16 February starts out above 1.5%. Note that for all experiments 
the prevalence of dry model grid points decreases with time.   

Incorporating the altered analysis scheme for the relative humidity field described in section 4.4 
allows one to gain the benefits of incorporating observations in the initial conditions while not 
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introducing the very dry spots found with the standard analysis technique. First, consider the  
16 February case where including observations into the initial conditions resulted in notable 
drying on model level 15 and the formation of two additional very dry spots. The altered analysis 
scheme (Exp. ObIC+) results in the removal of all very dry spots (figure 3); the domain 
minimum dewpoint is now approximately –48 °C instead of –80 °C as with Exp. ObIC. Note that 
the structure of the dewpoint field at this level in Exp. ObIC+ matches the structure of Exp. 
ObIC better than it matches Exp. Control, with the major difference being the lack of very dry 
conditions in Exp. ObIC+. The domain mean time series of grid points below 350 hPa for Exp. 
ObIC+ (figure 4c) shows that very few of the model grid points are less than the 0.1 percentile 
value (less than 0.1%); comparing this to the standard analysis method (Exp. ObIC; figure 4b) 
demonstrates the ability of the altered analysis scheme to greatly minimize very dry conditions in 
the initial conditions. 

Comparison of these experiments to observations (figure 5) indicates that although modifying the 
moisture analysis technique to avoid overdrying may slightly degrade how well the analysis fits 
the observations above 1000-m AGL, during the forecast the model performs at least as well (or 
slightly better) than when using the original method. At the initial time (12 UTC), inclusion of 
observations in the analysis (Exp. ObIC compared to Exp. Control) improves dewpoint mean 
absolute error (MAE) at all three levels plotted: by 2.3 K at 0–12000 m (figure 5a), by 1.3 K at 
0–1000 m (figure 5d), and by 0.8 K at 2 m (figure 5g). Modification of the analysis technique 
(Exp. ObIC+ compared to Exp. ObIC) changes the mean fit-to-observations by less than 0.1 K, 
except in the 0–12000-m-AGL layer where MAE increases by 0.2 K, although it still retains over 
90% of the improvement gained by including observations in the analysis. During the first six 
hours of the model integration including observations in the analysis improves the forecast at  
2 m (0.3 K in figure 5h) and 0–1000-m AGL (0.1 K in figure 5e), but degrades the forecast at 0–
12000 m (0.2 K in figure 5b). However, modification of the analysis method slightly improves 
dewpoint above the surface for 13–18 UTC (by 0.1K for both 0–1000 and 0–12000-m AGL).  
Thus, when compared to not performing an analysis, use of the new analysis method yields a 
slight degradation at 0–12000 m (0.1 K in figure 5b), but improvements for both 0–1000-m AGL 
(0.2 K in figure 5e) and 2 m (0.3 K in figure 5h). For the 7–24 h forecast (19–12 UTC) the three 
initial conditions yield nearly identical dewpoint MAE (figure 5c, f, i). Overall, the new moisture 
analysis methodology slightly improves model dewpoint forecasts as compared to the original 
moisture methodology. 

6.2 Data Assimilation 

When observation nudging is used in combination with the altered analysis methodology for 
creating observation-enhanced initial conditions the model appears to produce areas that are 
unrealistically dry. An example of this is figure 6d, which shows the dewpoint from Exp. 
ObsIC+Nud8 on 1 March at 13 UTC at model level 16. There is an area with very low dewpoints 
just offshore of southern California (at this location model level 16 is approximately 825 hPa, 
1600-m MSL). In the middle of this area, model water vapor mixing ratios drop to zero. The 
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absence of the dry spot from the analogous experiment without data assimilation (Exp. ObsIC+; 
figure 6a) indicates that the observation nudging is contributing to this dry spot.   

Further investigation reveals that the 12 UTC San Diego rawinsonde is the specific observation 
that leads to the dry spot. Around 825 hPa, the model indicates a smoother decrease of dewpoint 
with height than the sharp decrease in the observation (figure 2). This appears to the main cause 
of a negative moisture innovation, which causes the model to be nudged towards a drier solution 
at this point, as expected. The appearance of cloud water by 13 UTC in the non-nudging 
experiment in the vicinity of San Diego indicates that the physical tendency terms are working to 
increase the moisture at this point, contrary to the nudging. Therefore, compared to a case where 
the physical tendency terms are zero, the data assimilation is less effective in decreasing the 
error, and thus the innovation does not decrease as rapidly with time and the nudging tendency 
term will not decrease as rapidly with time. Just to the west of San Diego, the model does not 
form clouds by 13 UTC, suggesting that the model may be less resistant to drying there. The 
innovation is calculated at San Diego, where the physical tendency terms work to counteract the 
drying from nudging during this period. The innovation is then applied to an area that includes 
the area west of San Diego, where the physical tendency terms do not counteract drying during 
this period. The data assimilation is thus able to remove all moisture in a limited area west of San 
Diego at this model level by 13 UTC.    
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Figure 2.  Vertical profile comparing dewpoint from the 12 UTC 1 March 2012 San Diego, CA, rawinsonde as 
provided to the data assimilation after quality control is applied to the WRF model dewpoint at the grid 
point closest to this location for Exp. ObsIC+Nud8. 

−50 −40 −30 −20 −10 0 10 20

600

650

700

750

800

850

900

950

1000

P
re

ss
u
re

 (
h
P

a
)

Dewpoint (C)

Observed
ObsIC+Nud8



 

 12

 

Figure 3.  Dewpoint (°C) for Exps. (a) Control, (b) ObsIC, and (c) ObsIC+ on 16 February at 12 UTC at WRF-ARW 
model level 15.  
Dewpoint is indicated by shading, but note that all values less than –50 °C are shaded as –50 °C for clarity. 
Contours are also shown for every 10 °C increment of dewpoint, with those for negative values dashed. The 
minimum and maximum dewpoints across the domain at this time and model level are indicated at the top of 
the figure. 
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Figure 4.  Time series of the percentage of WRF grid points 
below 350 hPa that fall below the 0.1 percentile 
climatological value for that pressure bin for Exps. 
(a) Control, (b) ObIC, and (c) ObIC+. 
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Figure 5.  Dewpoint MAE for (a–c) 0–12000-m AGL; (d–f) 0–1000-m AGL; and (g–i) 2-m AGL at (a, d, g) 12 
UTC, (b, e, h) 13–18 UTC, and (c, f, i) 19–12 UTC for Exps. Control, ObIC, and ObIC+ for all five case 
days.  
Note: The dewpoint MAE averaged over all five case days is noted under the experiment name on the x-
axis.   
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Figure 6.  Dewpoint (°C) for Exps. (a) ObIC+, (b) ObIC+Nud4, (c) ObIC+Nud4+, (d) ObsIC+Nud8, 
and (e) ObsIC+Nud8+ on 1 March at 13 UTC at model level 16. 

 
Note: All values < –50 °C are shaded in the same dark blue. The plotting routine treats all 
dewpoints less than approximately –80 °C as –80 °C, which prevents “singularities” 
where the water vapor mixing ratio goes to or approaches zero. Black contour lines are 
plotted every 10 °C; these lines are dashed for negative values. The black “X” on the 
eastern edge of the dry spot marks the San Diego, CA, rawinsonde location. 
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Figure 7c shows a time series of the percentage of Exp. ObIC+Nud8 model grid points below 
350 hPa that had dewpoints lower than the 0.1 percentile value from the dewpoint climatology.  
The day with the dry spot we already indicated was due to nudging (1 March) and 16 February 
have the largest percentage of “dry” grid points, but the other three case days also have 
gridpoints that meet the criterion. For all five case days, the percentage of dry points does not 
increase after the end of the data assimilation (18 UTC), consistent with data assimilation being a 
primary cause of the dry spots. For the initial conditions, among the five case days the 
percentage of grid points below the 0.1 percentile criteria ranges from 0.00%–0.04%, consistent 
with the initial condition creation no longer being a significant source of very dry conditions for 
these experiments.  

Because observation nudging is causing the bulk of the remaining excessively dry areas in the 
WRF experiments, the first potential solution we explore is decreasing the influence of 
observation nudging on the solution by decreasing the strength of the observation nudging. The 
strength of the observation nudging is determined by the observation nudging weight; this term 
represents the inverse e-folding time for the decrease of the difference between the model and 
the observation at the observation location (i.e., the innovation). The nudging weight in the 
observation nudging experiment with the very dry area west of San Diego is 8 × 10-4 s–1, which 
translates to an e-folding time of 21 minutes (min) for the innovation. When the nudging weight 
is decreased by half to 4 × 10-4 s–1, the very dry area just west of San Diego is no longer present 
at 13 UTC (Exp. ObIC+Nud4, figure 6b). Compared to the experiment without any nudging 
(Exp. ObIC+, figure 6a), the model is drier just west of San Diego—but the extreme dryness 
predicted with the stronger nudging weight is absent. 

The overall distribution of sub-0.1 percentile dewpoints below 350 hPa for the five case days 
(figure 7) indicates that the weaker nudging strength is not sufficient to completely resolve the 
excessive dryness introduced by observation nudging. The percent of WRF grid points dryer than 
the 0.1 percentile value decreases with the decrease in nudging weight (figure 7a, c); however, 
the 1 March and 16 February cases still peak at more than 0.4% of grid points being dryer than 
the dewpoint threshold.   

Observation nudging assumes that the tendency term introduced by nudging is not larger than the 
physical tendency terms; this should allow the model to ingest the observation while keeping a 
meteorologically consistent solution. The efficacy of reducing the nudging weight in reducing 
model predictions of very dry conditions suggests that with the stronger nudging we may be 
violating this assumption.   



 

 17

 

Figure 7.  Time series of the percentage of WRF grid points below 350 hPa that fall below the 0.1 percentile 
climatological value for that pressure bin for Exps. (a) ObIC+Nud4, (b) ObIC+Nud4+, (c) ObIC+Nud8, 
and (d) ObIC+Nud8+. 

However, water vapor mixing ratio differs from the other two nudged variables, namely potential 
temperature and winds. Unlike potential temperature, spatial variability in water vapor mixing 
ratio at a given vertical level is large compared to its magnitude. While the wind field shares this 
characteristic with water vapor mixing ratio, unlike water vapor mixing ratio it is not 
meteorologically problematic to have either—or both—of the wind components (u and v) zero, 
or even negative. Additionally, it may be that it is more difficult for physical tendency terms to 
prevent observation nudging from drying the model solution excessively than it is for nudging to 
introduce meteorologically inconsistent results for other variables. Except near the land surface, 
it is not clear which moisture tendency terms would effectively prevent unrealistically dry 
conditions from being introduced by observation nudging. Therefore, compared to the other 
nudged variables, moisture is uniquely exposed to the possibility of observation nudging 
introducing values that are sufficiently low to be physically unrealistic.   
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To address this issue, the modification to observation nudging described in section 4.3 is applied 
to both the experiment with the weaker nudging (Exp. ObIC+Nud4) and the experiment with the 
stronger nudging (Exp. ObIC+Nud8). In the area west of San Diego that was very dry at 13 UTC 
in Exp. ObIC+Nud8 (figure 6d), the observation nudging modification (Exp. ObIC+Nud8+, 
figure 6e) results in much moister conditions, while allowing the overall dewpoint field to 
remain very similar to Exp. ObIC+Nud8. For the weaker nudging—even with the standard 
technique (Exp. ObIC+Nud4, figure 6b)—there was not an excessively dry area west of San 
Diego, but the new technique (Exp. ObIC+Nud4+, figure 6c) decreases the drying that did occur 
in that location, while keeping the overall dewpoint field very similar. Examining the statistics 
for all model grid points below 350 hPa, the new technique reduces the percentage of points with 
dewpoint below the 0.1 percentile to below 0.2% for all experiments (figure 7).   

Verification of model dewpoint against observations indicates that observation nudging improves 
the model results, while the modification to the observation nudging technique for moisture has 
limited effect on overall dewpoint MAE (figure 8). Excluding the initial conditions, during the 
preforecast time period 13–18 UTC (figures 8a, d, and g) the use of observation nudging 
decreases dewpoint MAE for the 2-m diagnostic level, as well as in the 0–1000 and 0–12000-m 
AGL layers. During this period where observation nudging is being applied there appears to be a 
small advantage to stronger nudging (ObsIC+Nud4 vs. ObsIC+Nud8) while the modification to 
the observation nudging technique (compare ObsIC+Nud4 vs. ObsIC+Nud4+ and compare 
ObsIC+Nud8 vs. ObsIC+Nud8+) has little effect on the verification, except for a small 
improvement in the 0–1000-m-AGL layer with the strong nudging (ObIC+Nud8 vs. 
ObIC+Nud8+ in figure 8d). For the 6 h after the preforecast (19–00 UTC, figures 8b, e, and h) 
the addition of nudging is generally advantageous, but both nudging strengths perform similarly. 
The observation nudging methodology change generally has little effect on the overall dewpoint 
MAE, but there is a slight improvement in the 0–12000-m-AGL layer with the stronger nudging 
(ObIC+Nud8 vs. ObIC+Nud8+ in figure 8b). Later in the forecast (01–12 UTC, figures 8c, f, and 
i), as expected there is less difference in dewpoint verification among the experiments. The use 
of nudging does improve 0–1000-m AGL dewpoint (ObIC+ vs. ObIC+Nud4 in figure 8f) and the 
use of the weaker nudging does improve 2-m AGL dewpoint (ObIC+ versus ObIC+Nud4 in 
figure 8i). There is no indication that the modification to the moisture nudging methodology 
adversely affects overall WRF dewpoint predictions, and the modification may slightly improve 
overall model dewpoint predictions. 
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Figure 8.  Dewpoint MAE for (a–c) 0–12000-m AGL; (d–f) 0–1000-m AGL; and (g–i) 2-m AGL at (a, d, g) 13–18 
UTC, (b, e, h) 19–00 UTC, and (c, f, i) 01–12 UTC for Exps. ObIC+, ObIC+Nud4, ObIC+Nud4+, 
ObIC+Nud8, and ObIC+Nud8+ for all five case days.  
 
Note: The dewpoint MAE averaged over all five case days is noted under the experiment name on the x-
axis. 

7. Summary and Conclusions 

Conditions that appear to be excessively dry can be introduced into a mesoscale model via 
analysis techniques, which incorporate observations in the initial conditions at a given time as 
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well as via observation nudging data assimilation—which applies observations over some time 
period. WRF-ARW was used for five case days (7 February, 9 February, 16 February, 1 March, 
and 5 March 2012) to examine this issue over the southwestern United States. A dewpoint 
climatology was calculated using the rawinsonde observations available within a 23-year period 
from four locations within the model domain for January–March and this climatology was used 
to objectively determine if the model value was “too dry”; in each 50 hPa pressure bin the lowest 
0.1-percentile value among the locations was used to construct a 0.1-percentile value that was 
used as the criterion determining excessive dryness. 

The creation of initial conditions by combining a first guess field from GFS with observations 
via a modified Cressman analysis was found to increase the prevalence of very low moisture; a 
method to resolve this issue was demonstrated. The case of 16 February 2012 was used to 
illustrate this issue. The percentage of model grid points in the initial conditions below the 0.1-
percentile value ranges among the case days from 0.06%–0.52% without the Cressman analysis, 
but increases to range between 0.41%–1.55% with the Cressman analysis. The Cressman 
analysis was altered such that if the analysis was decreasing relative humidity at a location where 
the first guess was dryer than the model at the observation location, then the decrease would be 
scaled by the ratio between model relative humidity at the location being dried and model 
relative humidity at the location of the observation that is causing the drying.  This removed the 
creation of excessive drying by the analysis of observations onto the GFS fields; it decreased the 
percentage of model grid points that are very dry to range between 0.00%–0.04%. Dewpoint 
verification indicates that use of the altered method for inclusion of observations in the initial 
conditions slightly decreases the fit of the initial conditions to observations above 1000 m (MAE 
increases by 0.2 K) compared to the original method; however, 90% of the increase in fit from 
the original analysis methodology is retained. For the model forecast, during the first 6 h the 
model-predicted dewpoint slightly improves with the new analysis as compared to the original 
method, while after the first 6 h the change in methodologies has very little effect on the 
verification. The modification in the analysis methodology is effective in removing the very dry 
conditions introduced by the original analysis methodology while not negatively impacting the 
overall model dewpoint forecast. 

The use of observation nudging was also found to introduce areas of excessive dryness, 
especially with stronger application of the nudging; a method was found to alleviate this issue.  
An example of this drying was seen on 1 March 2012 where in 1 h nudging decreased the water 
vapor mixing ratio to zero at approximately 825 hPa in an area over the Pacific Ocean, due to 
nudging based on the 12 UTC San Diego rawinsonde. Overall, at the end of the preforecast 
period (18 UTC), the percentage of model grid points with dewpoints below the 0.1-percentile 
threshold ranges among the case days from 0.01%– 0.78%, with 4 × 10–4 s–1 weighting and 
0.07%–1.22%, with 8 × 10–4 s–1 weighting. To mitigate this issue, negative water vapor mixing 
ratio innovations for observation nudging are limited to have an absolute magnitude less than the 
model water vapor mixing ratio at the point at which the innovation is being applied. This greatly 
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decreases the incidence of very dry areas in the model; at the end of the preforecast period, the 
percentage of model grid points with dewpoints below the 0.1-percentile threshold range among 
the case days from 0.00%–0.02% (4 × 10–4 s–1), or from 0.01%–0.09% (8 × 10–4 s–1). Dewpoint 
verification indicates that the new methodology does not degrade modeled dewpoint, and may 
slightly improve the dewpoint output by WRF-ARW.  The modified moisture observation 
nudging methodology notably decreases the introduction of very low water vapor levels by 
observation nudging, while the modification does not degrade the overall model moisture 
predictions. 

Applying both the modification to the relative humidity analysis methodology and the 
modification to the water vapor mixing ratio observation nudging in concert with modifications 
to the MYJ TKE parameterization largely eliminates excessively dry conditions from the WRF 
solution. These modifications do not degrade the overall model dewpoint forecast. In addition to 
the modifications, applying the observation nudging more weakly (4 × 10–4 s–1 rather than 8 × 
10–4 s–1) also mitigates the formation of very dry areas. Quality control of moisture observations 
is also important for ensuring that observations do not cause excessively dry model conditions.  
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9. List of Symbols, Abbreviations, and Acronyms 

3DVAR  three-dimensional variational assimilation 

4DVAR  four-dimensional variational assimilation 

ABL   atmospheric boundary layer 

AGL   above ground level 

ARL   U.S. Army Research Laboratory 

GFS   Global Forecast System 

GPS   Global Positioning System 

h   hour 

MADIS  Meteorological Assimilation Data Ingest System 

MAE   mean absolute error 

METAR  aviation routine weather report 

min   minute 

MYJ   Mellor-Yamada-Janjić 

NCAR   National Center for Atmospheric Research 

NCEP-EMC National Centers for Environmental Predictions Environmental Modeling 
Center 

NOHRSC  National Operational Hydrologic Remote Sensing Center 

NOAA   National Oceanic and Atmospheric Administration 

RRTM   Rapid Radiative Transfer Model 

RTMA   Real Time Mesoscale Analysis 

SNODAS  Snow Data Assimilation System 

TAMDAR  Tropospheric Aircraft Meteorological Data Reports 

TKE   turbulent kinetic energy 

UTC   Coordinated Universal Time 
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